मराठी

Prove the Following Trigonometric Identities. `Tan Theta - Cot Theta = (2 Sin^2 Theta - 1)/(Sin Theta Cos Theta)` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`

उत्तर

 We have to prove  `tan theta - cot theta = (2 sin^2 theta - `1)/(sin theta cos theta)`

We know that. `sin^2 theta + cos^2 theta - 1`

So,

`tan theta - cot theta = sin theta/cos theta -  cos theta/sin theta`

`= (sin^2 theta - cos^2 theta)/(sin theta cos theta)`

`= (sin^2 theta -  (1 - sin^2 theta))/(sin theta cos theta)`

`= (sin^2 theta - (1 - sin^2 theta))/(sin theta cos theta)`

`= (2 sin^2 theta - 1)/(sin theta cos theta)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 23.2 | पृष्ठ ४४

संबंधित प्रश्‍न

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


Prove the following identities:

`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`


Prove the following identities:

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


Find the value of sin ` 48° sec 42° + cos 48°  cosec 42°`

 


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tanθ + cotθ. 


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`


Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.

Activity:

`5/(sin^2theta) - 5cot^2theta`

= `square (1/(sin^2theta) - cot^2theta)`

= `5(square - cot^2theta)   ......[1/(sin^2theta) = square]`

= 5(1)

= `square`


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


Show that tan4θ + tan2θ = sec4θ – sec2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×