Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
उत्तर
We have to prove `tan theta - cot theta = (2 sin^2 theta - `1)/(sin theta cos theta)`
We know that. `sin^2 theta + cos^2 theta - 1`
So,
`tan theta - cot theta = sin theta/cos theta - cos theta/sin theta`
`= (sin^2 theta - cos^2 theta)/(sin theta cos theta)`
`= (sin^2 theta - (1 - sin^2 theta))/(sin theta cos theta)`
`= (sin^2 theta - (1 - sin^2 theta))/(sin theta cos theta)`
`= (2 sin^2 theta - 1)/(sin theta cos theta)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
Show that tan4θ + tan2θ = sec4θ – sec2θ.