Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
उत्तर
We have to prove `cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
We know that `sin^2 theta + cos^2 theta = 1`
So,
`cot theta - tan theta = (cos theta)/(sin theta) - (sin theta)/(cos theta)`
`= (cos^2 theta - sin^2 theta)/(sin theta cos theta)`
`= (cos^2 theta - (1 - cos^2 theta))/(sin theta cos theta)`
`= (cos^2 theta - 1 + cos^2 theta)/(sin theta cos theta)`
`= (2 cos^2 theta - 1)/(sin theta cos theta)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
`(1-cos^2theta) sec^2 theta = tan^2 theta`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that sin4A – cos4A = 1 – 2cos2A
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ