मराठी

Prove the Following Trigonometric Identities. Cot Theta - Tan Theta = (2 Cos^2 Theta - 1)/(Sin Theta Cos Theta) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`

उत्तर

 We have to prove  `cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`

We know that `sin^2 theta + cos^2 theta = 1`

So,

`cot theta - tan theta = (cos theta)/(sin theta) - (sin theta)/(cos theta)`

`= (cos^2 theta - sin^2 theta)/(sin theta cos theta)`

`= (cos^2 theta - (1 - cos^2 theta))/(sin theta cos theta)`

`= (cos^2 theta - 1 + cos^2 theta)/(sin theta cos theta)`

`= (2 cos^2 theta - 1)/(sin theta cos theta)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 23.1 | पृष्ठ ४४

संबंधित प्रश्‍न

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.


Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


`(1-cos^2theta) sec^2 theta = tan^2 theta`


`(cos theta  cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`


 Write True' or False' and justify your answer  the following : 

The value of  \[\cos^2 23 - \sin^2 67\]  is positive . 


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Without using trigonometric table , evaluate : 

`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`


For ΔABC , prove that : 

`tan ((B + C)/2) = cot "A/2`


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


Prove that sin4A – cos4A = 1 – 2cos2A


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`


If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×