मराठी

Write True' Or False' and Justify Your Answer the Following : the Value of Cos 2 23 − Sin 2 67 is Positive . - Mathematics

Advertisements
Advertisements

प्रश्न

 Write True' or False' and justify your answer  the following : 

The value of  \[\cos^2 23 - \sin^2 67\]  is positive . 

चूक किंवा बरोबर

उत्तर

\[\cos^2 23°- \sin^2 67°\]
\[ = \sin^2 \left( 90°- 23°\right) - \sin^2 67°\]
\[ = \sin^2 67° - \sin^2 67°\]
\[ = 0\] 

Which is not positive, the given statement is false.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.3 | Q 24.3 | पृष्ठ ५६

संबंधित प्रश्‍न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove the following trigonometric identities

tan2 A + cot2 A = sec2 A cosec2 A − 2


Prove that:

`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec  theta)`


`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`


Prove that:

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then 


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`


Prove the following identities.

sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ


If 2sin2β − cos2β = 2, then β is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×