Advertisements
Advertisements
Question
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
Solution
\[\cos^2 23°- \sin^2 67°\]
\[ = \sin^2 \left( 90°- 23°\right) - \sin^2 67°\]
\[ = \sin^2 67° - \sin^2 67°\]
\[ = 0\]
Which is not positive, the given statement is false.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
The value of sin2 29° + sin2 61° is
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`