English

`Sqrt((1-cos Theta)/(1+Cos Theta)) = (Cosec Theta - Cot Theta)` - Mathematics

Advertisements
Advertisements

Question

`sqrt((1-cos theta)/(1+cos theta)) = (cosec  theta - cot  theta)`

Solution

LHS = `sqrt((1-cos theta)/(1+ cos theta))`

      =`sqrt(((1-cos theta))/((1+cos theta)) xx ((1- cos theta))/((1 - cos theta))`

      =`sqrt((1-cos theta)^2 / (1-cos^2 theta))`

    =`sqrt((1-cos theta)^2)/(sin^2 theta)`

     =`(1-cos theta)/sin theta`

     =`1/sin theta - cos theta/ sin theta`

     =(๐‘๐‘œ๐‘ ๐‘’๐‘ ๐œƒ − cot ๐œƒ)
      = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 21.2

RELATED QUESTIONS

Prove the following identities:

`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`

`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`

`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`


If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`


Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

`cosecA + cotA = 1/(cosecA - cotA)`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ. 


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Prove the following identity :

`1/(tanA + cotA) = sinAcosA`


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1


If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


(1 + sin A)(1 – sin A) is equal to ______.


Share
Notifications

Englishเคนเคฟเค‚เคฆเฅ€เคฎเคฐเคพเค เฅ€


      Forgot password?
Use app×