Advertisements
Advertisements
Question
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Solution
LHS = (secA - cosA)(secA + cosA)
= `(sec^2A - cos^2A) = 1 + tan^2A - (1 - sin^2A)`
= `tan^2A + sin^2A` = RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that cot2θ × sec2θ = cot2θ + 1
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ