Advertisements
Advertisements
Question
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Solution
L.H.S. = (1 – tan A)2 + (1 + tan A)2
= (1 + tan2A – 2 tan A) + (1 + tan2A + 2 tan A)
= 2(1 + tan2A)
= 2 sec2A
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Prove that cot2θ × sec2θ = cot2θ + 1
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.