Advertisements
Advertisements
Question
Prove that cot2θ × sec2θ = cot2θ + 1
Solution
L.H.S = cot2θ × sec2θ
= `(cos^2theta)/(sin^2theta) xx 1/(cos^2theta)`
= `1/(sin^2theta)`
= cosec2θ
= 1 + cot2θ ......[∵ 1 + cot2θ = cosec2θ]
= R.H.S
∴ cot2θ × sec2θ = cot2θ + 1
APPEARS IN
RELATED QUESTIONS
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
If 2sin2β − cos2β = 2, then β is ______.