English

If a Cot θ + B Cosec θ = P and B Cot θ − a Cosec θ = Q, Then P2 − Q2 - Mathematics

Advertisements
Advertisements

Question

If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 

Options

  • a2 − b2

  • b2 − a2

  • a2 + b2

  •  b − a

MCQ

Solution

Given: 

`a cotθ+b cosecθ=P,`

`b cotθ+a cosecθ=q `

Squaring both the equations and then subtracting the second from the first, we have

`(p)^2-(q)^2=(a cot θ+b.cosecθ)^2-(b cot θ+a cosecθ)^2`

`=(a^2cot^θ+b^2 cosec^2θ+2.a cotθ.b cosecθ)-(b^2 cot^2θ+a^2 cosec^2θ+2 cotθ.a cosecθ)`

`=a^2 cot^2θ+b^2 cosec^2θ+2 ab cotθ cosecθ-b^2 cot^2θ-a^2cosec^2θ-2ab cotθcosecθ`

`⇒a^2 cot^2θ+b^2 cosec^2θ-b^2 cot^2θ-a^2 cosec^2θ`

`⇒(b^2 cosec^θ-b^2 cot^2 θ)+(-a^2 cosec^2θ+a^2 cot^2θ)=p^2-q^2`

`⇒b^2(cosec^2θ-cot^2θ)-a^2(cosec^θ-cot^2θ)=p^2-q^2`

`⇒b^2(1)-a^2(1)=p^2-q^2`

`⇒b^2-a^2=p^2-q^2` 

`⇒p^2-q^2=b^2-a^2`

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.4 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.4 | Q 17 | Page 57

RELATED QUESTIONS

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

`(cot A + tan B)/(cot B + tan A) = cot A tan B`


Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


If sec θ + tan θ = x, then sec θ =


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


Prove that cot2θ × sec2θ = cot2θ + 1


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×