Advertisements
Advertisements
Question
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Options
a2 − b2
b2 − a2
a2 + b2
b − a
Solution
Given:
`a cotθ+b cosecθ=P,`
`b cotθ+a cosecθ=q `
Squaring both the equations and then subtracting the second from the first, we have
`(p)^2-(q)^2=(a cot θ+b.cosecθ)^2-(b cot θ+a cosecθ)^2`
`=(a^2cot^θ+b^2 cosec^2θ+2.a cotθ.b cosecθ)-(b^2 cot^2θ+a^2 cosec^2θ+2 cotθ.a cosecθ)`
`=a^2 cot^2θ+b^2 cosec^2θ+2 ab cotθ cosecθ-b^2 cot^2θ-a^2cosec^2θ-2ab cotθcosecθ`
`⇒a^2 cot^2θ+b^2 cosec^2θ-b^2 cot^2θ-a^2 cosec^2θ`
`⇒(b^2 cosec^θ-b^2 cot^2 θ)+(-a^2 cosec^2θ+a^2 cot^2θ)=p^2-q^2`
`⇒b^2(cosec^2θ-cot^2θ)-a^2(cosec^θ-cot^2θ)=p^2-q^2`
`⇒b^2(1)-a^2(1)=p^2-q^2`
`⇒b^2-a^2=p^2-q^2`
`⇒p^2-q^2=b^2-a^2`
APPEARS IN
RELATED QUESTIONS
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If sec θ + tan θ = x, then sec θ =
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Prove that cot2θ × sec2θ = cot2θ + 1
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.