Advertisements
Advertisements
प्रश्न
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
विकल्प
a2 − b2
b2 − a2
a2 + b2
b − a
उत्तर
Given:
`a cotθ+b cosecθ=P,`
`b cotθ+a cosecθ=q `
Squaring both the equations and then subtracting the second from the first, we have
`(p)^2-(q)^2=(a cot θ+b.cosecθ)^2-(b cot θ+a cosecθ)^2`
`=(a^2cot^θ+b^2 cosec^2θ+2.a cotθ.b cosecθ)-(b^2 cot^2θ+a^2 cosec^2θ+2 cotθ.a cosecθ)`
`=a^2 cot^2θ+b^2 cosec^2θ+2 ab cotθ cosecθ-b^2 cot^2θ-a^2cosec^2θ-2ab cotθcosecθ`
`⇒a^2 cot^2θ+b^2 cosec^2θ-b^2 cot^2θ-a^2 cosec^2θ`
`⇒(b^2 cosec^θ-b^2 cot^2 θ)+(-a^2 cosec^2θ+a^2 cot^2θ)=p^2-q^2`
`⇒b^2(cosec^2θ-cot^2θ)-a^2(cosec^θ-cot^2θ)=p^2-q^2`
`⇒b^2(1)-a^2(1)=p^2-q^2`
`⇒b^2-a^2=p^2-q^2`
`⇒p^2-q^2=b^2-a^2`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ