Advertisements
Advertisements
प्रश्न
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
उत्तर
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
L.H.S. = `(1 - tan^2theta)/(cot^2 theta - 1)`
= `1 - tan^2theta ÷ 1/(tan^2theta) - 1`
= `1 - tan^2theta ÷ (1 - tan^2theta)/(tan^2theta)`
= `(1 - tan^2theta) xx (tan^2theta)/((1 - tan^2 theta))`
= tan2 θ
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`