Advertisements
Advertisements
प्रश्न
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
उत्तर
tan4 θ + tan2 θ = sec4 θ – sec2 θ
L.H.S = tan4 θ + tan2 θ
Taking out tan2 θ as common
= tan2 θ (tan2 θ + 1)
We know that
1 + tan2 θ = sec2 θ
i.e. tan2 θ = sec2 θ - 1
It can be written as
= (sec2 θ – 1) sec2 θ
So we get
= sec4 θ – sec2 θ
= R.H.S
Therefore, it is proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If 1 – cos2θ = `1/4`, then θ = ?
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ