Advertisements
Advertisements
प्रश्न
If 1 – cos2θ = `1/4`, then θ = ?
उत्तर
1 – cos2θ = `1/4` ......[Given]
∴ sin2θ = `1/4` .....`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
∴ sin θ = `1/2` ......[Taking square root of both sides]
∴ θ = 30° ......`[because sin 30^circ = 1/2]`
APPEARS IN
संबंधित प्रश्न
(secA + tanA) (1 − sinA) = ______.
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
From the figure find the value of sinθ.
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
cos4 A − sin4 A is equal to ______.
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
If cos θ = `24/25`, then sin θ = ?
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.