Advertisements
Advertisements
प्रश्न
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
उत्तर
L.H.S = `(cos^2theta)/(sintheta) + sintheta`
= `(cos^2theta + sin^2theta)/sintheta`
= `1/sintheta` .......[∵ sin2θ + cos2θ = 1]
= cosec θ
= R.H.S
∴ `(cos^2theta)/(sintheta) + sintheta` = cosec θ
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A = ______.
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
(i)` (1-cos^2 theta )cosec^2theta = 1`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
If tan θ = `x/y`, then cos θ is equal to ______.
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ