Advertisements
Advertisements
प्रश्न
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
उत्तर
Taking LHS
(cosec θ - sinθ )(secθ - cos θ ) ( tanθ +cot θ)
`(1/(sin theta )- sin theta )(1/(cos θ )- cosθ )((sin θ)/(cos θ) +(cos θ)/(sin θ))`
`=((1-sin^2 θ)/(sin θ)) ((1- cos ^2θ)/(cos θ)) ((sin^2 θ + cos^2 θ)/(sin θ . cos θ))`
`= (cos^2 θ)/( sin θ) xx (sin^2 θ)/(cos θ ) xx 1/(sinθ . cos θ )` = 1 = RHS
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ