Advertisements
Advertisements
प्रश्न
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
उत्तर
Given: sin θ + 2 cos θ = 1
Squaring on both sides,
(sin θ + 2 cos θ)2 = 1
⇒ sin2 θ + 4 cos2 θ + 4sin θ cos θ = 1
Since, sin2 θ = 1 – cos2 θ and cos2 θ = 1 – sin2 θ
⇒ (1 – cos2 θ) + 4(1 – sin2 θ) + 4sin θ cos θ = 1
⇒ 1 – cos2 θ + 4 – 4 sin2 θ + 4sin θ cos θ = 1
⇒ – 4 sin2 θ – cos2 θ + 4sin θ cos θ = – 4
⇒ 4 sin2 θ + cos2 θ – 4sin θ cos θ = 4
We know that,
a2 + b2 – 2ab = (a – b)2
So, we get,
(2sin θ – cos θ)2 = 4
⇒ 2sin θ – cos θ = 2
Hence proved.
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
sin2θ + sin2(90 – θ) = ?
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
(1 + sin A)(1 – sin A) is equal to ______.