हिंदी

Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2. - Mathematics

Advertisements
Advertisements

प्रश्न

Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.

योग

उत्तर

Given: sin θ + 2 cos θ = 1

Squaring on both sides,

(sin θ + 2 cos θ)2 = 1

⇒ sin2 θ + 4 cos2 θ + 4sin θ cos θ = 1

Since, sin2 θ = 1 – cos2 θ and cos2 θ = 1 – sin2 θ

⇒ (1 – cos2 θ) + 4(1 – sin2 θ) + 4sin θ cos θ = 1

⇒ 1 – cos2 θ + 4 – 4 sin2 θ + 4sin θ cos θ = 1

⇒ – 4 sin2 θ – cos2 θ + 4sin θ cos θ = – 4

⇒ 4 sin2 θ + cos2 θ – 4sin θ cos θ = 4

We know that,

a2 + b2 – 2ab = (a – b)2

So, we get,

(2sin θ – cos θ)2 = 4

⇒ 2sin θ – cos θ = 2

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.4 [पृष्ठ ९९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.4 | Q 5 | पृष्ठ ९९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×