Advertisements
Advertisements
प्रश्न
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
उत्तर
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
`sqrt((1 + sin theta)/(1 - sin theta)) = sqrt(((1 + sin theta)(1 + sin theta))/((1 - sin theta)(1 + sin theta))`
= `sqrt((1 + sin theta)^2/(1 - sin^2 theta)`
= `sqrt((1 + sin theta)^2/(cos^2 theta)`
= `(1 + sin theta)/cos theta`
`sqrt(((1 - sin theta))/((1 + sin theta))) = sqrt(((1 - sin theta))/((1 - sin theta)) xx ((1 + sin theta))/((1 - sin theta))`
= `sqrt((1 - sin theta)^2/(1 - sin^2 theta)`
= `sqrt((1- sin theta)^2/(cos^2 theta)) = (1 - sin theta)/cos theta`
L.H.S. = `sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta)`
= `(1 + sin theta)/cos theta + (1 - sin theta)/cos theta`
= `(1 + sin theta + 1 - sin theta)/cos theta`
= `2/cos theta`
= 2 sec θ
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
\[\frac{x^2 - 1}{2x}\] is equal to
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to