हिंदी

X 2 − 1 2 X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{x^2 - 1}{2x}\] is equal to 

विकल्प

  •  sec θ + tan θ

  •  sec θ − tan θ

  •  sec2 θ + tan2 θ

  • sec2 θ − tan2 θ

MCQ

उत्तर

The given expression is `sqrt ((1+sinθ)/(1-sinθ))`

Multiplying both the numerator and denominator under the root by `1+ sinθ`, we have 

`sqrt (((1+ sinθ)(1+sin θ))/((1+sin θ)(1-sinθ)))`     

`=sqrt((1+sinθ)/((1- sin^2θ)))` 

`= sqrt((1+ sinθ)^2/cos^2θ)`

=`(1+sinθ)/cosθ` 

=` 1/cosθ+sinθ/cosθ` 

=` sec θ+tan θ`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 3 | पृष्ठ ५६

संबंधित प्रश्न

 
 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)` 

[Hint : Simplify LHS and RHS separately.]

 
 

Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`


Prove the following identities:

`(1 + sin A)/(1 - sin A) = (cosec  A + 1)/(cosec  A - 1)`


Prove the following identities:

`sinA/(1 + cosA) = cosec A - cot A`


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


Prove the following identities:

`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`


Prove that:

`cot^2A/(cosecA - 1) - 1 = cosecA`


`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


Prove the following identity :

tanA+cotA=secAcosecA 


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


If 1 – cos2θ = `1/4`, then θ = ?


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


Prove that sec2θ – cos2θ = tan2θ + sin2θ


Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×