Advertisements
Advertisements
Question
\[\frac{x^2 - 1}{2x}\] is equal to
Options
sec θ + tan θ
sec θ − tan θ
sec2 θ + tan2 θ
sec2 θ − tan2 θ
Solution
The given expression is `sqrt ((1+sinθ)/(1-sinθ))`
Multiplying both the numerator and denominator under the root by `1+ sinθ`, we have
`sqrt (((1+ sinθ)(1+sin θ))/((1+sin θ)(1-sinθ)))`
`=sqrt((1+sinθ)/((1- sin^2θ)))`
`= sqrt((1+ sinθ)^2/cos^2θ)`
=`(1+sinθ)/cosθ`
=` 1/cosθ+sinθ/cosθ`
=` sec θ+tan θ`
APPEARS IN
RELATED QUESTIONS
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
If cos θ = `24/25`, then sin θ = ?
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
If cosA + cos2A = 1, then sin2A + sin4A = 1.
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.