English

`(sec^2 theta -1)(cosec^2 theta - 1)=1` - Mathematics

Advertisements
Advertisements

Question

`(sec^2 theta -1)(cosec^2 theta - 1)=1`

Solution

LHS = `(sec^2 theta -1)(cosec^2 theta-1)`

       =`tan^2 theta xx cot^2 theta  ( ∵ sec^2 theta - tan^2 theta = 1 and cosec^2 theta - cot^2 theta =1)`

      =` tan^2 theta xx1/(cos^2theta)`

     =1

      =RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 2.2

RELATED QUESTIONS

Prove the following identities:

`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`

`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`

`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`


Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`


Prove the following trigonometric identities:

`(1 - cos^2 A) cosec^2 A = 1`


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


`(1-cos^2theta) sec^2 theta = tan^2 theta`


`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Prove the following identity : 

`sec^4A - sec^2A = sin^2A/cos^4A`


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


Prove that cot2θ × sec2θ = cot2θ + 1


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


The value of tan A + sin A = M and tan A - sin A = N.

The value of `("M"^2 - "N"^2) /("MN")^0.5`


If tan θ = `x/y`, then cos θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×