Advertisements
Advertisements
Question
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Solution
L.H.S. `=(cosec A)/(cosecA - 1) + (cosecA)/(cosecA + 1)`
= `(cosec A (cosec A + 1) + cosec A (cosec A - 1))/((cosec A - 1) (cosec A + 1))`
= `(cosec^2 A+cosec A + cosec^2 A-cosec A)/((cosec A)^2 - (1)^2)`
= `(2 cosec^2 A)/(cosec^2 A - 1)`
= `(2 cosec^2 A)/(cot^2 A)` ...(∵ cosec2 A – 1 = cot2 A)
= `2(1/cancel(sin^2A))/(cos^2A/cancel(sin^2A))`
= `2/cos^2A`
= 2 sec2 A
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.