English

If M = ` ( Cos Theta - Sin Theta ) and N = ( Cos Theta + Sin Theta ) "Then Show That" Sqrt(M/N) + Sqrt(N/M) = 2/Sqrt(1-tan^2 Theta)`. - Mathematics

Advertisements
Advertisements

Question

If m = ` ( cos theta - sin theta ) and n = ( cos theta +  sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.

Solution

LBS = `sqrt(m/n) + sqrt(n/m)`

       =`sqrt(m)/sqrt(n) + sqrt(m)/sqrt(n)`

       =`(m+n)/sqrt(mn)`

       =`((cos theta - sin theta ) + ( cos theta + sin theta ))/sqrt(( cos theta - sin theta ) ( cos theta + sin theta ))`

      =`(2 cos theta )/ sqrt( cos ^2 theta - sin^2 theta)`

      =`(2 cos theta ) / sqrt( cos ^ theta - sin^ theta)`

     =` ((( 2 cos theta )/( cos theta)))/((sqrt(cos^2 theta - sin^2 theta)/(cos theta))`

     =`2/(sqrt((cos^2 theta)/(cos^2 theta) - ( sin^2 theta) /( cos^2 theta))`

     =`2/sqrt(1- tan^2 theta)`

   = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 2

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 2 | Q 15

RELATED QUESTIONS

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following identities:

(cos A + sin A)2 + (cos A – sin A)2 = 2


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


Write the value of tan1° tan 2°   ........ tan 89° .


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


Prove the following identity :

`cosec^4A - cosec^2A = cot^4A + cot^2A`


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


For ΔABC , prove that : 

`tan ((B + C)/2) = cot "A/2`


Evaluate:
`(tan 65°)/(cot 25°)`


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×