Advertisements
Advertisements
Question
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Solution
We have to prove (sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
We know that `sin^2 A + cos^2 A = 1`
So,
`(sec A − cosec A) (1 + tan A + cot A) = (1/cos A - 1/sin A)(1 + sinA/cos A + cos A/sin A)`
`= ((sin A - cos A)/(sin A cos A))((sin A cos A + sin^2 A + cos^2 A)/(sin A cos A))`
`= ((sin A - cos A)/(sin A cos A)) ((sin A cos A + 1)/(sin A cos A))`
`= ((sin A - cos A)(sin A cos A + 1))/(sin^2 A cos^2 A)`
`= (sin^2 A cos A + sin A - cos^2 A sin A - cos A)/(sin^2 A cos^2 A)`
`= ((sin^2 A cos A - cos A) + (sin A - cos^2 A sin A))/(sin^2 A cos^2 A)`
`= (cos A(sin^2 A - 1) + sin A (1 - cos^2 A))/(sin^2 A cos^2 A)`
`= (cos A(-cos^2 A) + sin A (sin^2 A))/(sin^2 A cos^2 A)`
`= (-cos^3 A + sin^3 A)/(sin^2 A cos^2 A)`
`= (sin^3 A - cos^3 A)/(sin^2 A cos^2 A)`
`= sin^3 A/(sin^2 A cos^2 A) - cos^3 A/(sin^2 A cos^2 A)`
`= sin A/cos^2 A = cos A/sin^2 A`
`= sin A/cos A 1/cos A - cos A/sin A 1/sin A`
= tan A sec A - cot A cosec A
Hence proved.
APPEARS IN
RELATED QUESTIONS
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
If cos θ = `24/25`, then sin θ = ?
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
(1 + sin A)(1 – sin A) is equal to ______.