English

Prove the Following Trigonometric Identities. (Sec A − Cosec A) (1 + Tan A + Cot A) = Tan A Sec A − Cot A Cosec A - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A

Solution

We have to prove  (sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A

We know that `sin^2 A + cos^2 A = 1`

So,

`(sec A − cosec A) (1 + tan A + cot A) = (1/cos A - 1/sin A)(1 + sinA/cos A + cos A/sin A)`

`= ((sin A - cos A)/(sin A cos A))((sin A cos A + sin^2 A + cos^2 A)/(sin A cos A))`

`= ((sin A - cos A)/(sin A cos A)) ((sin A cos A + 1)/(sin A cos A))`

`= ((sin A - cos A)(sin A cos A + 1))/(sin^2 A cos^2 A)`

`= (sin^2 A cos A + sin A - cos^2 A sin A - cos A)/(sin^2 A cos^2 A)`

`= ((sin^2 A cos A - cos A) + (sin A - cos^2 A sin A))/(sin^2 A cos^2 A)`

`= (cos A(sin^2 A - 1) + sin A (1 - cos^2 A))/(sin^2 A cos^2 A)`

`= (cos A(-cos^2 A) + sin A (sin^2 A))/(sin^2 A cos^2 A)`

`= (-cos^3 A + sin^3 A)/(sin^2 A cos^2 A)`

`= (sin^3 A - cos^3 A)/(sin^2 A cos^2 A)`

`= sin^3 A/(sin^2 A cos^2 A) - cos^3 A/(sin^2 A cos^2 A)`

`= sin A/cos^2 A = cos A/sin^2 A`

`= sin A/cos A 1/cos A - cos A/sin A  1/sin A`

= tan A sec A - cot A cosec A

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 62 | Page 46

RELATED QUESTIONS

If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p


if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`


`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`


`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ. 


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identities:

`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`


Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`


If cos θ = `24/25`, then sin θ = ?


Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)


Prove that

sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A


Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ


Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


(1 + sin A)(1 – sin A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×