Advertisements
Advertisements
Question
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Solution
`1/(cosA + sinA) + 1/(cosA - sinA)`
= `(cosA + sinA + cosA - sinA)/((cosA + sinA)(cosA - sinA)`
= `(2cosA)/(cos^2A - sin^2A)`
= `(2cosA)/(cos^2A - (1 - cos^2A))`
= `(2cosA)/(cos^2A - 1 + cos^2A)`
= `(2cosA)/(2cos^2A - 1)`
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
If 3 sin θ = 4 cos θ, then sec θ = ?
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.