Advertisements
Advertisements
Question
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Solution
Given: sin θ + 2 cos θ = 1
Squaring on both sides,
(sin θ + 2 cos θ)2 = 1
⇒ sin2 θ + 4 cos2 θ + 4sin θ cos θ = 1
Since, sin2 θ = 1 – cos2 θ and cos2 θ = 1 – sin2 θ
⇒ (1 – cos2 θ) + 4(1 – sin2 θ) + 4sin θ cos θ = 1
⇒ 1 – cos2 θ + 4 – 4 sin2 θ + 4sin θ cos θ = 1
⇒ – 4 sin2 θ – cos2 θ + 4sin θ cos θ = – 4
⇒ 4 sin2 θ + cos2 θ – 4sin θ cos θ = 4
We know that,
a2 + b2 – 2ab = (a – b)2
So, we get,
(2sin θ – cos θ)2 = 4
⇒ 2sin θ – cos θ = 2
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
If `sec theta + tan theta = x," find the value of " sec theta`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
What is the value of 9cot2 θ − 9cosec2 θ?
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Evaluate:
`(tan 65°)/(cot 25°)`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.