English

If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or 12. - Mathematics

Advertisements
Advertisements

Question

If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.

Sum

Solution

Given: 1 + sin2 θ = 3 sin θ cos θ

Dividing L.H.S and R.H.S equations with sin2θ,

We get, 

`(1 + sin^2 theta)/(sin^2 theta) = (3 sin theta cos theta)/(sin^2 theta)`

`\implies 1/(sin^2 theta) + 1 = (3 cos theta)/sintheta`

cosec2 θ + 1 = 3 cot θ

Since, cosec2 θ – cot2 θ = 1 

`\implies` cosec2 θ = cot2 θ + 1

`\implies` cot2 θ + 1 + 1 = 3 cot θ

`\implies` cot2 θ + 2 = 3 cot θ

`\implies` cot2 θ – 3 cot θ + 2 = 0

Splitting the middle term and then solving the equation,

`\implies` cot2 θ – cot θ – 2 cot θ + 2 = 0

`\implies` cot θ(cot θ – 1) – 2(cot θ + 1) = 0

`\implies` (cot θ – 1)(cot θ – 2) = 0

`\implies` cot θ = 1, 2

Since,

tan θ = `1/cot θ`

tan θ = `1, 1/2`

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction To Trigonometry and Its Applications - Exercise 8.4 [Page 99]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 8 Introduction To Trigonometry and Its Applications
Exercise 8.4 | Q 4 | Page 99

RELATED QUESTIONS

Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


Prove the following identity :

`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`


Prove the following identity :

`1/(tanA + cotA) = sinAcosA`


Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.


If 2sin2β − cos2β = 2, then β is ______.


Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... ∵ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×