Advertisements
Advertisements
Question
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
Solution
Given: 1 + sin2 θ = 3 sin θ cos θ
Dividing L.H.S and R.H.S equations with sin2θ,
We get,
`(1 + sin^2 theta)/(sin^2 theta) = (3 sin theta cos theta)/(sin^2 theta)`
`\implies 1/(sin^2 theta) + 1 = (3 cos theta)/sintheta`
cosec2 θ + 1 = 3 cot θ
Since, cosec2 θ – cot2 θ = 1
`\implies` cosec2 θ = cot2 θ + 1
`\implies` cot2 θ + 1 + 1 = 3 cot θ
`\implies` cot2 θ + 2 = 3 cot θ
`\implies` cot2 θ – 3 cot θ + 2 = 0
Splitting the middle term and then solving the equation,
`\implies` cot2 θ – cot θ – 2 cot θ + 2 = 0
`\implies` cot θ(cot θ – 1) – 2(cot θ + 1) = 0
`\implies` (cot θ – 1)(cot θ – 2) = 0
`\implies` cot θ = 1, 2
Since,
tan θ = `1/cot θ`
tan θ = `1, 1/2`
Hence proved.
RELATED QUESTIONS
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
If 2sin2β − cos2β = 2, then β is ______.
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.