Advertisements
Advertisements
Question
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
Solution
(sin A + cos A) (sec A + cosec A)
= `sinA/cosA + 1 + 1 + cosA/sinA`
= `2 + (cos^2A + sin^2A)/(sinAcosA)`
= `2 + 1/(sinAcosA)`
= 2 + sec A cosec A
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
From the figure find the value of sinθ.
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If 2sin2θ – cos2θ = 2, then find the value of θ.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.