Advertisements
Advertisements
Question
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
Solution
Given that,
a sin θ + b cos θ = c
On squaring both sides,
(a . sin θ + cos θ . b)2 = c2
⇒ a2sin2θ + b2cos2θ + 2ab sin θ . cos θ = c2 ...[∵ (x + y)2 = x2 + 2xy + y2]
⇒ a2(1 – cos2θ) + b2(1 – sin2θ) + 2ab sinθ . cosθ = c2 ...[∵ sin2θ + cos2θ = 1]
⇒ a2 – a2 cos2θ + b2 – b2sin2θ + 2ab sinθ . cosθ = c2
⇒ a2 + b2 – c2 = a2cos2θ + b2sin2θ – 2ab sinθ . cosθ
⇒ (a2 + b2 – c2) = (a cos θ – b sin θ)2 ...[∵ a2 + b2 – 2ab = (a – b)2]
⇒ (a cos θ – b sin θ)2 = a2 + b2 – c2
⇒ a cos θ – b sin θ = `sqrt(a^2 + b^2 + c^2)`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
From the figure find the value of sinθ.
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Choose the correct alternative:
sec2θ – tan2θ =?
Prove that sin4A – cos4A = 1 – 2cos2A
Prove that sec2θ – cos2θ = tan2θ + sin2θ
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.