English

`(Cos Ec^Theta + Cot Theta )/( Cos Ec Theta - Cot Theta ) = (Cosec Theta + Cot Theta )^2 = 1+2 Cot^2 Theta + 2cosec Theta Cot Theta` - Mathematics

Advertisements
Advertisements

Question

`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`

Solution

Here, `( cosec theta + cot theta )/( cosec theta - cot theta)`

        = `((cosec theta + cot theta) ( cosec theta + cot theta ))/(( cosec theta - cot theta ) ( cosec theta + cot theta))`

        =` ((cosec theta + cot theta)^2)/(( cosec ^2 theta - cot^2 theta))`

       =`((cosec theta + cot theta )^2) /1`

      =`(cosec theta + cot theta )^2`

 Again , `( cosec theta + cot theta )^2`

     = ` cosec^2 theta + cot^2 theta + 2 cosec theta  cot theta `

     =` 1+cot^2 theta + cot^2 theta + 2 cosec theta  cot theta (∵ cosec^2 theta - cot^2 theta =1)`

    =` 1+2 cot^2 theta + 2 cosec theta  cot theta `

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 26.1

RELATED QUESTIONS

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1


Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


What is the value of 9cot2 θ − 9cosec2 θ? 


(sec A + tan A) (1 − sin A) = ______.


Prove the following identity : 

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.


If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


If cos A + cos2A = 1, then sin2A + sin4 A = ?


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×