English

If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______. - Mathematics

Advertisements
Advertisements

Question

If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.

Options

  • 1

  • `1/2`

  • 2

  • 3

MCQ
Fill in the Blanks

Solution

If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is 1.

Explanation:

Given,

sinA + sin2A = 1

⇒ sinA = 1 – sin2A = cos2A   ...[∵ sin2θ + cos2θ = 1]

On squaring both sides, we get

sin2A = cos4A

⇒ 1 – cos2A = cos4A

⇒ cos2A + cos4A = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [Page 90]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 9 | Page 90

RELATED QUESTIONS

Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`


If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


Simplify : 2 sin30 + 3 tan45.


Write the value of cosec2 (90° − θ) − tan2 θ. 


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Without using trigonometric identity , show that :

`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×