हिंदी

If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.

विकल्प

  • 1

  • `1/2`

  • 2

  • 3

MCQ
रिक्त स्थान भरें

उत्तर

If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is 1.

Explanation:

Given,

sinA + sin2A = 1

⇒ sinA = 1 – sin2A = cos2A   ...[∵ sin2θ + cos2θ = 1]

On squaring both sides, we get

sin2A = cos4A

⇒ 1 – cos2A = cos4A

⇒ cos2A + cos4A = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [पृष्ठ ९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 9 | पृष्ठ ९०

संबंधित प्रश्न

 

Evaluate

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`

 

Prove the following trigonometric identities.

`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`


Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove the following trigonometric identities

tan2 A + cot2 A = sec2 A cosec2 A − 2


Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


Prove that:

`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`


`sin^2 theta + 1/((1+tan^2 theta))=1`


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`


\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


Prove the following identity : 

`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`


If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to


Choose the correct alternative:

sec2θ – tan2θ =?


Prove the following:

`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×