Advertisements
Advertisements
प्रश्न
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
विकल्प
1
`1/2`
2
3
उत्तर
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is 1.
Explanation:
Given,
sinA + sin2A = 1
⇒ sinA = 1 – sin2A = cos2A ...[∵ sin2θ + cos2θ = 1]
On squaring both sides, we get
sin2A = cos4A
⇒ 1 – cos2A = cos4A
⇒ cos2A + cos4A = 1
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`sin^2 theta + 1/((1+tan^2 theta))=1`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Choose the correct alternative:
sec2θ – tan2θ =?
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ