Advertisements
Advertisements
प्रश्न
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
उत्तर
It is given that,
\[\cos9\theta = \sin\theta, 9\theta < 90°\]
\[ \Rightarrow \sin\left( 90°- 9\theta \right) = \sin\theta \left[ \sin\left( 90° - \theta \right) = \cos\theta \right]\]
\[ \Rightarrow 90° - 9\theta = \theta\]
\[ \Rightarrow 10\theta = 90°\]
\[ \Rightarrow \theta = 9°\]
\[\text{ Therefore }, \tan6\theta = \tan54°.\]
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If `secθ = 25/7 ` then find tanθ.
If tanθ `= 3/4` then find the value of secθ.
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
sin2θ + sin2(90 – θ) = ?
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ