हिंदी

Prove the Following Trigonometric Identities. (1 - Cos A)/(1 + Cos A) = (Cot a - Cosec A)^2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`

योग

उत्तर १

We need to prove `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`

Now, rationalising the L.H.S, we get

`(1 - cos A)/(1 + cos A) = ((1 - cos A)/(1 +  cos A)) ((1 - cos A)/(1 - cos A))`

`= (1 - cos A)^2/(1 - cos^2 A)`      (using `a^2 - b^2 = (a + b)(a - b))`

` = (1 + cos^2 A - 2 cos A)/sin^2 A`    (Using `sin^2 theta = 1 - cos^2 theta`)

`= 1/sin^2 A + cos^2 A/sin^2 A - (2 cos A)/sin^2 A`

Using `cosec theta = 1/sin theta` and `cot theta = cos theta/sin theta` we get

`1/sin^2 A + cos^2 A/sin^2 A - (2 cos A)/sin^2 A = cosec^2 A + cot^2 A - 2 cot A cosec A`

` (cot A - cosec A)^2`    (Using `(a + b)^2 = a^2 + b^2 + 2ab`)

Hence proved.

shaalaa.com

उत्तर २

LHS = `(1 - cos θ)/(1 + cos θ)`

= `(1 - cos θ)/(1 + cos θ) xx (1 - cos θ)/(1 - cos θ)`

= `(1 - cos θ)^2/(1 - cos^2 θ)`

= `(1 - cos θ)^2/(sin^2 θ)`

= `[(1 - cosθ)/(sin θ)]^2`

= `[ 1/sinθ  - cosθ/sin θ ]^2`

= ( cosec θ - cot θ )2

= [ - (cot θ - cosec θ)]2

= (cot θ - cosec θ)2

= RHS

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
अध्याय 18 Trigonometry
Exercise 2 | Q 61.1
आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 40 | पृष्ठ ४५

संबंधित प्रश्न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove that `cosA/(1+sinA) + tan A =  secA`


Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`


Prove the following identities:

`cosecA + cotA = 1/(cosecA - cotA)`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`


`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`


`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`


What is the value of 9cot2 θ − 9cosec2 θ? 


If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.


(sec A + tan A) (1 − sin A) = ______.


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Without using trigonometric table , evaluate : 

`cosec49°cos41° + (tan31°)/(cot59°)`


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Without using trigonometric identity , show that :

`cos^2 25^circ + cos^2 65^circ = 1`


Evaluate:

sin2 34° + sin56° + 2 tan 18° tan 72° – cot30°


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


If x sin3θ + y cos3 θ = sin θ cos θ  and x sin θ = y cos θ , then show that x2 + y2 = 1.


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B


The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Eliminate θ if x = r cosθ and y = r sinθ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×