Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
उत्तर १
We need to prove `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Now, rationalising the L.H.S, we get
`(1 - cos A)/(1 + cos A) = ((1 - cos A)/(1 + cos A)) ((1 - cos A)/(1 - cos A))`
`= (1 - cos A)^2/(1 - cos^2 A)` (using `a^2 - b^2 = (a + b)(a - b))`
` = (1 + cos^2 A - 2 cos A)/sin^2 A` (Using `sin^2 theta = 1 - cos^2 theta`)
`= 1/sin^2 A + cos^2 A/sin^2 A - (2 cos A)/sin^2 A`
Using `cosec theta = 1/sin theta` and `cot theta = cos theta/sin theta` we get
`1/sin^2 A + cos^2 A/sin^2 A - (2 cos A)/sin^2 A = cosec^2 A + cot^2 A - 2 cot A cosec A`
` (cot A - cosec A)^2` (Using `(a + b)^2 = a^2 + b^2 + 2ab`)
Hence proved.
उत्तर २
LHS = `(1 - cos θ)/(1 + cos θ)`
= `(1 - cos θ)/(1 + cos θ) xx (1 - cos θ)/(1 - cos θ)`
= `(1 - cos θ)^2/(1 - cos^2 θ)`
= `(1 - cos θ)^2/(sin^2 θ)`
= `[(1 - cosθ)/(sin θ)]^2`
= `[ 1/sinθ - cosθ/sin θ ]^2`
= ( cosec θ - cot θ )2
= [ - (cot θ - cosec θ)]2
= (cot θ - cosec θ)2
= RHS
Hence proved.
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove that `cosA/(1+sinA) + tan A = secA`
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
What is the value of 9cot2 θ − 9cosec2 θ?
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
Eliminate θ if x = r cosθ and y = r sinθ.