Advertisements
Advertisements
प्रश्न
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
उत्तर
LHS = `1/(sin θ + cos θ) + 1/(sin θ - cos θ)`
= `((sin θ - cos θ) + (sin θ + cos θ))/(sin^2 θ - cos^2 θ)`
= `(2 sin θ)/((1 - cos^2 θ) - cos^2 θ)`
= `(2 sin θ)/(1 - 2cos^2 θ)`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
If sec θ + tan θ = x, then sec θ =
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.