Advertisements
Advertisements
प्रश्न
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
उत्तर
Given: `cosec θ-cot θ=α`
We know that, `cosec^2θ-cot^2θ=1`
Therefore,
`cosec^2 θ-cot^2θ=1`
⇒ `(cosec θ+cot θ) (cosec θ-cot θ)=1`
⇒ `(cosecθ+cot θ )α=1`
⇒ `(cosec θ+cot θ)=1/α`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
sec4 A − sec2 A is equal to
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove that sec2θ – cos2θ = tan2θ + sin2θ
tan θ × `sqrt(1 - sin^2 θ)` is equal to: