हिंदी

If Cosec θ − Cot θ = α, Write the Value of Cosec θ + Cot α. - Mathematics

Advertisements
Advertisements

प्रश्न

If cosec θ − cot θ = α, write the value of cosec θ + cot α.

संक्षेप में उत्तर

उत्तर

Given: `cosec θ-cot θ=α` 

We know that, `cosec^2θ-cot^2θ=1` 

Therefore, 

`cosec^2 θ-cot^2θ=1` 

⇒ `(cosec θ+cot θ) (cosec θ-cot θ)=1` 

⇒ `(cosecθ+cot θ )α=1` 

⇒ `(cosec θ+cot θ)=1/α`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.3 | Q 6 | पृष्ठ ५५

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`


`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`


If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`


The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]


sec4 A − sec2 A is equal to


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


(sec A + tan A) (1 − sin A) = ______.


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Prove the following identity : 

`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`


If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1


Prove that sec2θ – cos2θ = tan2θ + sin2θ


tan θ × `sqrt(1 - sin^2 θ)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×