Advertisements
Advertisements
प्रश्न
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
उत्तर
If `sqrt(3)` sin θ – cos θ = θ
To prove tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
`sqrt(3)` sin θ – cos θ = θ
`sqrt(3)` sin θ = cos θ
`sin theta/cos theta = 1/sqrt(3)`
tan θ = tan 30°
θ = 30°
L.H.S = tan 3θ°
= tan3 (30°)
= tan 90°
= undefined (α)
R.H.S = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
= `(3tan30^circ - tan^2 30^circ)/(1 - 3tan^2 30^circ)`
= `3(1/sqrt(3)) - (1/sqrt(3))^3 ÷ 1 - 3 xx (1/sqrt(3))^2`
= `sqrt(3) - 1/(3sqrt(3)) ÷ 1 - 3 xx 1/3`
= `(9 - 1)/(3sqrt(3)) ÷ 1 - 1`
= `8/(3sqrt(3)) ÷ 0`
= undefined (α)
∴ tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove that:
tan (55° + x) = cot (35° – x)
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.