Advertisements
Advertisements
प्रश्न
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
उत्तर
L.H.S = `costheta/(1 + sintheta)`
= `costheta/(1 + sintheta) xx (1 - sintheta)/(1 - sintheta)` ......[On rationalising the denominator]
= `(costheta(1 - sintheta))/(1 - sin^2theta)`
= `(costheta(1 - sintheta))/(cos^2theta)` ......`[(because sin^2theta +cos^2theta = 1),(therefore 1 -sin^2theta = cos^2theta)]`
= `(1 - sintheta)/costheta`
= R.H.S
∴ `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`