Advertisements
Advertisements
प्रश्न
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
उत्तर
`sinA/(1 - cosA) - cotA`
= `sinA/(1 - cosA) - cosA/sinA`
= `(sin^2A - cosA + cos^2A)/((1 - cosA)sinA)`
= `(1 - cosA)/((1 - cosA)sinA)`
= `1/sinA`
= cosec A
APPEARS IN
संबंधित प्रश्न
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`