Advertisements
Advertisements
प्रश्न
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
उत्तर
LHS = `sin^6 theta + cos^6 theta`
=` (sin^2 theta )^3 + (cos^2 theta )^3`
Put sin2 θ = a and cos2 θ = b
∴ L.H.S. = a3 + b3
= (a + b)3 − 2ab (a + b)
=`(sin ^2 theta + cos^2 theta )-3 sin^2thetacos^2 theta(sin^2 theta cos^2 theta)`
=`(1)^3 - 3 sin^2 theta cos^2 theta` [∴ sin2 θ + cos2 θ = 1]
=`1-3sin^2 theta cos^2 theta`
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
cosec4θ − cosec2θ = cot4θ + cot2θ
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
If sin θ = `1/2`, then find the value of θ.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
If 2sin2θ – cos2θ = 2, then find the value of θ.