हिंदी

Choose the correct alternative: sin θ = 12, then θ = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

sin θ = `1/2`, then θ = ?

विकल्प

  • 30°

  • 45°

  • 60°

  • 90°

MCQ

उत्तर

30°

sin θ = `1/2`

∴ θ = 30°      ...[sin 30° = `1/2`]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.1 (A)

संबंधित प्रश्न

 

Evaluate

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`

 

Without using trigonometric tables evaluate

`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Show that : tan 10° tan 15° tan 75° tan 80° = 1


Prove the following identities:

`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`


Prove that:

(cosec A – sin A) (sec A – cos A) sec2 A = tan A


`sec theta (1- sin theta )( sec theta + tan theta )=1`


`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×