Advertisements
Advertisements
प्रश्न
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
उत्तर
5 sec θ – 12 cosec θ = 0 ......[Given]
∴ 5 sec θ = 12 cosec θ
∴ `5/costheta = 12/sintheta` ......`[because sectheta = 1/costheta, "cosec" theta = 1/sintheta]`
∴ `sintheta/costheta = 12/5`
∴ tan θ = `12/5`
We know that,
1 + tan2θ = sec2θ
∴ `1 + (12/5)^2` = sec2θ
∴ `1 + 144/25` = sec2θ
∴ `(25 + 144)/25` = sec2θ
∴ sec2θ = `169/25`
∴ secθ = `13/5` ......[Taking square root of both sides]
Now, cos θ = `1/sectheta`
= `1/((13/5))`
∴ cos θ = `5/13`
We know that,
sin2θ + cos2θ = 1
∴ `sin^2theta + (5/13)^2` = 1
∴ `sin^2theta + 25/169` = 1
∴ sec2θ = `1 - 25/169`
∴ sec2θ = `(169 - 25)/169`
∴ sec2θ = `144/169`
∴ sin θ = `12/13` ......[Taking square root of both sides]
∴ sin θ = `12/13`, sec θ = `13/5`.
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`