Advertisements
Advertisements
प्रश्न
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
उत्तर १
`[x/a cos theta + y/b sin theta]^2 + [x/a sin theta - y/b cos theta] = (1)^2 + (1)^2`
`x^2/a^2 cos^2 theta + y^2/b^2 sin^2 theta (2xy)/(ab) cos theta sin theta = x^2/a^2 sin^2 theta + y^2/b^2 cos^2 theta - (2xy)/(ab) sin theta cos theta = 1 + 1`
`x^2/a^2 cos^2 theta + y^2/b^2 cos^2 theta + y^2/b^2 sin^2 theta = 2`
`cos^ theta [x^2/a^2 + y^2/b^2] + sin^2 theta(x^2/a^2 + y^2/a^2) = 2`
`x^2/a^2 + y^2/b^2` = (∴ `cos^2 theta + sin^2 theta = 1`)
उत्तर २
It is given that:
`x/a cos θ + y/b sin θ = 1` ....(A)
and `x/a sin θ - y/b cos θ = 1` ....(B)
On squaring equation (A), we get
`(x/a cos θ + y/b sin θ)^2 = (1)^2`
⇒ `x^2/a^2 cos^2 θ + y^2/b^2 sin^2 θ + 2 x/a . y/b sin θ. cos θ = 1` ....(c)
On squaring equation (B), we get
= `(x/a sin θ - y/b cos θ )^2 = (1)^2`
⇒ `x^2/a^2 sin^2 θ + y^2/b^2 cos^2 θ + 2 x/a . y/b sin θ. cos θ = 1` ....(D)
Adding (C) and (D), we get,
⇒ `x^2/a^2 cos^2 θ + y^2/b^2 sin^2 θ + 2 x/a . y/b sin θ. cos θ + x^2/a^2 sin^2 θ + y^2/b^2 cos^2 θ + 2 x/a . y/b sin θ. cos θ = 1 + 1`
⇒ `x^2/a^2 sin^2 θ + y^2/b^2cos^2 θ-(4xy)/"ab" sin^2 θ + cos^2 θ = 2`
⇒ `x^2/a^2 xx 1 + y^2/b^2 xx 1 = 2`
⇒ `x^2/a^2 + y^2/b^2 = 2`
Hence proved.
संबंधित प्रश्न
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
cosec4θ − cosec2θ = cot4θ + cot2θ
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.