हिंदी

If X/A Cos Theta + Y/B Sin Theta = 1 and X/A Sin Theta - Y/B Cos Theta = 1 Prove that X^2/A^2 + Y^2/B^2 = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2  = 2`

योग

उत्तर १

`[x/a cos theta + y/b sin theta]^2 + [x/a sin theta - y/b cos theta] = (1)^2 + (1)^2`

`x^2/a^2 cos^2 theta + y^2/b^2 sin^2 theta (2xy)/(ab) cos theta sin theta = x^2/a^2 sin^2 theta + y^2/b^2 cos^2 theta - (2xy)/(ab) sin theta cos theta = 1 + 1`

`x^2/a^2  cos^2 theta + y^2/b^2 cos^2 theta  + y^2/b^2 sin^2  theta  = 2` 

`cos^ theta [x^2/a^2 + y^2/b^2] + sin^2 theta(x^2/a^2  + y^2/a^2) = 2`

`x^2/a^2 + y^2/b^2` = (∴ `cos^2 theta + sin^2 theta = 1`)

shaalaa.com

उत्तर २

It is given that:

`x/a cos θ + y/b sin θ = 1`     ....(A)

and `x/a sin θ - y/b cos θ = 1`    ....(B) 

On squaring equation (A), we get

`(x/a cos θ + y/b sin θ)^2 = (1)^2`

⇒ `x^2/a^2 cos^2 θ + y^2/b^2 sin^2 θ + 2 x/a . y/b sin θ. cos θ = 1`     ....(c)

On squaring equation (B), we get

= `(x/a sin θ - y/b cos θ )^2 = (1)^2`

⇒ `x^2/a^2 sin^2 θ + y^2/b^2 cos^2 θ + 2 x/a . y/b sin θ. cos θ = 1`  ....(D)

Adding (C) and (D), we get,

⇒ `x^2/a^2 cos^2 θ + y^2/b^2 sin^2 θ + 2 x/a . y/b sin θ. cos θ + x^2/a^2 sin^2 θ + y^2/b^2 cos^2 θ + 2 x/a . y/b sin θ. cos θ = 1 + 1`

⇒ `x^2/a^2 sin^2 θ  + y^2/b^2cos^2 θ-(4xy)/"ab" sin^2 θ + cos^2 θ = 2`

⇒ `x^2/a^2 xx 1 + y^2/b^2 xx 1 = 2`

⇒ `x^2/a^2 + y^2/b^2 = 2`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
अध्याय 18 Trigonometry
Exercise 2 | Q 67
आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 75 | पृष्ठ ४६

संबंधित प्रश्न

Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following trigonometric identities.

`(cos^2 theta)/sin theta - cosec theta +  sin theta  = 0`


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2


Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1


Prove the following identities:

`(1 + sin A)/(1 - sin A) = (cosec  A + 1)/(cosec  A - 1)`


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


Prove the following identities:

`cosA/(1 - sinA) = sec A + tan A`


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


Prove that

`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


cosec4θ − cosec2θ = cot4θ + cot2θ


`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `


If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\] 


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


Prove the following:

`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×