Advertisements
Advertisements
प्रश्न
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
उत्तर
L.H.S = `sintheta/(1 + cos theta) + (1 + cos theta)/sintheta`
Taking the L.C.M of the denominators,
We get,
= `(sin^2theta + (1 + cos theta)^2)/((1 + cos theta)* sintheta)`
= `(sin^2theta + 1 + cos^2theta + 2costheta)/((1 + costheta) * sin theta)`
Since, sin2θ + cos2θ = 1
= `(1 + 1 + 2costheta)/((1 + costheta) * sin theta)`
= `(2 + 2 cos theta)/((1 + cos theta) * sin theta)`
= `(2(1 + cos theta))/((1 + cos theta) * sin theta)`
Since, `1/sin theta` = cosec θ
= `2/sin theta`
= 2 cosec θ
R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
` tan^2 theta - 1/( cos^2 theta )=-1`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
If `sec theta = x ,"write the value of tan" theta`.
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`