Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
उत्तर
L.H.S. = `(cotA + cosecA - 1)/(cotA - cosecA + 1)`
= `(cotA + cosecA - (cosec^2A - cot^2A))/(cotA - cosecA + 1)` ...[cosec2A – cot2A = 1]
= `(cotA + cosecA - [(cosecA - cotA)(cosecA + cotA)])/(cotA - cosecA + 1`
= `(cotA + cosecA[1 - cosecA + cotA])/(cotA - cosecA + 1)`
= cot A + cosec A
= `cosA/sinA + 1/sinA`
= `(1 + cosA)/sinA`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
Given that sin θ = `a/b`, then cos θ is equal to ______.
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Show that tan4θ + tan2θ = sec4θ – sec2θ.
If sin A = `1/2`, then the value of sec A is ______.