Advertisements
Advertisements
प्रश्न
Show that tan4θ + tan2θ = sec4θ – sec2θ.
उत्तर
L.H.S = tan4θ + tan2θ
= tan2θ(tan2θ + 1)
= tan2θ.sec2θ ...[∵ sec2θ = tan2θ + 1]
= (sec2θ – 1).sec2θ ...[∵ tan2θ = sec2θ – 1]
= sec4θ – sec2θ
= R.H.S
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Write the value of cos1° cos 2°........cos180° .
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Prove that sin4A – cos4A = 1 – 2cos2A
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ