Advertisements
Advertisements
प्रश्न
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
उत्तर
4 `tan^2 theta - 4 / cos^2 theta`
=` 4 tan^2 theta - 4 sec^2 theta`
=`4 (tan^2 theta - sec^2 theta )`
=4(-1)
= -4
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
If sec θ = `25/7`, then find the value of tan θ.
Evaluate:
`(tan 65°)/(cot 25°)`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1