Advertisements
Advertisements
प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
उत्तर
Let `x/a=y/b = z/c` = k
=> x = ak, y = bk, z = ck
L.H.S = `x^3/a^3 + y^3/b^3 + z^3/c^3`
`= (ak)^3/(a^3) + (bk)^3/b^3 + (ck)^3/c^3`
`= (a^3k^3)/a^3 + (b^3k^3)/b^3 + (c^3k^3)/c^3`
`= k^3 + k^3 + k^3`
= `3k^3`
R.H.S = `(3xyz)/(abc)`
`= (3(ak)(bk)(ck))/(abc)`
`= (3(k^3)(abc))/(abc)`
`= 3k^3`
= L.H.S
=> L.H.S = R.H.S
`=> x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m