Advertisements
Advertisements
प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
उत्तर
LHS = sin6θ + cos6θ
= (sin2θ)3 + (cos2θ)3
= (sin2θ + cos2θ) (sin4θ + cos4θ - sin2θ⋅cos2θ)
= (1)[(sin2θ + cos2θ)2 - 2sin2θ⋅cos2θ - sin2θ⋅cos2θ]
= (1)[(1)2 - 3sin2θ⋅cos2θ]
= 1 - 3sin2θ ⋅ cos2θ
= RHS
APPEARS IN
संबंधित प्रश्न
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
`(sec^2 theta-1) cot ^2 theta=1`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
Simplify : 2 sin30 + 3 tan45.
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Choose the correct alternative:
1 + cot2θ = ?
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S