हिंदी

Prove that sin^6θ + cos^6θ = 1 – 3 sin^2θ. cos^2θ. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.

उत्तर

LHS = sin6θ + cos6θ

        = (sin2θ)3 + (cos2θ)3

        = (sin2θ + cos2θ) (sin4θ + cos4θ - sin2θ⋅cos2θ)

        = (1)[(sin2θ + cos2θ)2 - 2sin2θ⋅cos2θ - sin2θ⋅cos2θ]

        = (1)[(1)2 - 3sin2θ⋅cos2θ]

        = 1 - 3sin2θ ⋅ cos2θ

        = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Set B

संबंधित प्रश्न

If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`


Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Prove the following trigonometric identities.

(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


Prove the following identities:

cosec4 A (1 – cos4 A) – 2 cot2 A = 1


`(sec^2 theta-1) cot ^2 theta=1`


`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`


`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`


If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`


Simplify : 2 sin30 + 3 tan45.


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


Without using trigonometric identity , show that :

`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Choose the correct alternative:

1 + cot2θ = ? 


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×