Advertisements
Advertisements
प्रश्न
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
उत्तर
L.H.S = `sqrt(sec^2 theta + cosec^2 theta)`
`= sqrt(1/(cos^2 theta) + 1/(sin^2 theta))`
`= sqrt((sin^2 theta + cos^2 theta)/(cos^2 theta sin ^2 theta))`
`= sqrt(1/(cos^2 theta sin^2 theta))`
`= sqrt(1/(cos^2 theta) xx 1/(sin^2 theta))`
`= sqrt(sec^2 theta xx cosec^2 theta)`
`=sec theta xx cosec theta`
R.H.S = `tan theta + cot theta = (sin theta)/(cos theta)+ cos theta/sin theta = (sin^2 theta + cos^2 theta)/(cos theta sin theta) = 1/cos theta xx 1/sin theta = sec theta xx cosec theta`
Thus L.H.S = R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If `sin theta = x , " write the value of cot "theta .`
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.