Advertisements
Advertisements
Question
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Solution
L.H.S = `sqrt(sec^2 theta + cosec^2 theta)`
`= sqrt(1/(cos^2 theta) + 1/(sin^2 theta))`
`= sqrt((sin^2 theta + cos^2 theta)/(cos^2 theta sin ^2 theta))`
`= sqrt(1/(cos^2 theta sin^2 theta))`
`= sqrt(1/(cos^2 theta) xx 1/(sin^2 theta))`
`= sqrt(sec^2 theta xx cosec^2 theta)`
`=sec theta xx cosec theta`
R.H.S = `tan theta + cot theta = (sin theta)/(cos theta)+ cos theta/sin theta = (sin^2 theta + cos^2 theta)/(cos theta sin theta) = 1/cos theta xx 1/sin theta = sec theta xx cosec theta`
Thus L.H.S = R.H.S
APPEARS IN
RELATED QUESTIONS
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ